Abstract
Emissions from heavy-duty vehicles need to be reduced to decrease their impact on the climate and to meet future regulatory requirements. The use of a cost-optimized thermoelectric generator based on total cost of ownership is proposed for this vehicle class with natural gas engines. A holistic model environment is presented that includes all vehicle interactions. Simultaneous optimization of the heat exchanger and thermoelectric modules is required to enable high system efficiency. A generator design combining high electrical power (peak power of about 3000 W) with low negative effects was selected as a result. Numerical CFD and segmented high-temperature thermoelectric modules are used. For the first time, the possibility of an economical use of the system in the amortization period of significantly less than 2 years is available, with a fuel reduction in a conventional vehicle topology of already up to 2.8%. A significant improvement in technology maturity was achieved, and the power density of the system was significantly improved to 298 W/kg and 568 W/dm3 compared to the state of the art. A functional model successfully validated the simulation results with an average deviation of less than 6%. An electrical output power of up to 2700 W was measured.
Author supplied keywords
Cite
CITATION STYLE
Heber, L., Schwab, J., & Knobelspies, T. (2022). 3 kw thermoelectric generator for natural gas-powered heavy-duty vehicles—holistic development, optimization and validation. Energies, 15(1). https://doi.org/10.3390/en15010015
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.