Human endeavours span a wide spectrum of activities which includes solving fascinating problems in the realms of engineering, arts, sciences, medical sciences, social sciences, economics and environment. To solve these problems, classical mathematics methods are insufficient. The real-world problems involve many uncertainties making them difficult to solve by classical means. The researchers world over have established new mathematical theories such as fuzzy set theory and rough set theory in order to model the uncertainties that appear in various fields mentioned above. In the recent days, soft set theory has been developed which offers a novel way of solving real world issues as the issue of setting the membership function does not arise. This comes handy in solving numerous problems and many advancements are being made now-a-days. Jun introduced hybrid structure utilizing the ideas of a fuzzy set and a soft set. It is to be noted that hybrid structures are a speculation of soft set and fuzzy set. In the present work, the notion of hybrid ideals of a near-ring is introduced. Significant work has been carried out to investigate a portion of their significant properties. These notions are characterized and their relations are established furthermore. For a hybrid left (resp., right) ideal, different left (resp., right) ideal structures of near-rings are constructed. Efforts have been undertaken to display the relations between the hybrid product and hybrid intersection. Finally, results based on homomorphic hybrid preimage of a hybrid left (resp., right) ideals are proved.
CITATION STYLE
Elavarasan, B., Muhiuddin, G., Porselvi, K., & Jun, Y. B. (2021). Hybrid structures applied to ideals in near-rings. Complex and Intelligent Systems, 7(3), 1489–1498. https://doi.org/10.1007/s40747-021-00271-7
Mendeley helps you to discover research relevant for your work.