The Caenorhabditis elegans UNC-45 protein contains tetratricopeptide repeats and a domain with similarity to fungal proteins, and it differentially colocalizes with myosin heavy chain B in the body wall muscles of adult worms. Although it is essential for normal myosin filament assembly in body wall muscle development, strong mutants show a previously unexplained maternal effect. We show here that the UNC-45 protein is maternally contributed and is present in all cells of the early embryo whereas zygotic UNC-45 expression is only detected in the developing muscle cells. Embryos produced from adults with reduced germline expression of UNC-45 exhibit cytokinesis defects suggesting that UNC-45 has a novel role in the early embryo in addition to muscle development. Yeast two-hybrid screens show that UNC-45 can directly interact with NMY-2, a non-muscle type II myosin, and UNC-45 and NMY-2 colocalize at cell boundaries in early embryos. Localization of UNC-45 at these boundaries is dependent upon the presence of NNM2. Our results suggest that UNC-45 interacts with more than one type of myosin and functions in the embryo to regulate cytoplasmic myosin assembly and/or stability during cytokinesis.
CITATION STYLE
Kachur, T., Ao, W., Berger, J., & Pilgrim, D. (2004). Maternal UNC-45 is involved in cytokinesis and colocalizes with non-muscle myosin in the early Caenorhabditis elegans embryo. Journal of Cell Science, 117(22), 5313–5321. https://doi.org/10.1242/jcs.01389
Mendeley helps you to discover research relevant for your work.