Abstract
A series of arylalkyl and alkyl isothiocyanates, and their glutathione, cysteine, and N-acetylcysteine conjugates were used to study their inhibitory activity toward the dealkylation of ethoxyresorufin (EROD), pentoxyresorufin (PROD), and methoxyresorufin (MROD) in liver microsomes obtained from the 3-methylcholanthrene or phenobarbital-treated rats. These reactions are predominantly mediated by cytochrome P450 (P450) isozymes 1A1 and 1A2, 2B1 and 1A2, respectively. All isothiocyanates inhibited PROD more readily than EROD. Increases in the alkyl chain length of arylalkyl isothiocyanates to C6 resulted in an increased inhibitory potency in these assays; at longer alkyl chain lengths (C8-C10) the inhibitory potency declined. The IC50s for phenethyl isothiocyanate (PEITC) were 47, 46 and 1.8 μM for EROD, MROD and PROD, respectively. Substitution of an additional phenyl group on PEITC also increased the inhibitory potency; the IC50s for 1,2-diphenylethyl isothiocyanate (1,2-DPEITC) and 2,2-diphenylethyl isothiocyanate (2,2-DPEITC) were 0.9 and 0.26 μM for EROD, and 0.045 and 0.13 μM for PROD, respectively. The relative inhibitory potency of PEITC and its conjugates was N-acetylcysteine-PEITC (PEITC-NAC) < glutathione-PEITC (PEITC-GSH) < cysteine-PEITC (PEITC-CYS)
Cite
CITATION STYLE
Conaway, C. C., Jiao, D., & Chung, F. L. (1996). Inhibition of rat liver cytochrome P450 isozymes by isothiocyanates and their conjugates: A structure-activity relationship study. Carcinogenesis, 17(11), 2423–2427. https://doi.org/10.1093/carcin/17.11.2423
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.