Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake

27Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Rumen microbial composition and functions have vital roles in feed digestion and fermentation and are linked to feed efficiency in cattle. This study selected Holstein cows, which are high in both milk protein content and milk yield, to analyse the relationship between the rumen microbiota and residual feed intake (RFI). Eighteen multiparous lactating cows were divided into low RFI (LRFI, high efficiency, n = 9) and high RFI (HRFI, low efficiency, n = 9) groups to investigate the differences in microbial composition and functions. Results: The relative abundances of butyrate producers, including the Clostridium, Butyrivibrio, Eubacterium and Blautia genera, were higher in HRFI cows than in LRFI cows (P < 0.05). Four carbohydrate metabolic pathways (glycolysis/gluconeogenesis, pentose phosphate pathway, fructose and mannose metabolism, and butanoate metabolism) and one energy metabolism pathway (methane metabolism), were more abundant in HRFI animals (P < 0.05). Quorum sensing and DNA replication pathways were more abundant in HRFI cows. For CAZyme profiles, 14 out of 19 genes encoding carbohydrates-deconstructing enzymes were more abundant in HRFI cows (P < 0.05). Seven Lachnospiraceae species associated with carbohydrate metabolism and quorum sensing may contribute to the difference in feed efficiency. Moreover, the LRFI cows had lower abundances of Methanosphaera (P < 0.01), Methanobrevibacter ruminantium (P = 0.09) and methanogenesis functions (P = 0.04). Conclusions: The rumen microbiota of low-efficiency cows has stronger abilities to degrade carbohydrates and produce methane, and quorum sensing pathways could also be associated with differences in feed efficiency. This study provides a deeper understanding of the microbial ecology of dairy cows with different feed efficiencies and highlights the possibility of modulating the rumen microbiome or microbial functions to improve the feed efficiency of dairy cows.

Cite

CITATION STYLE

APA

Xie, Y., Sun, H., Xue, M., & Liu, J. (2022). Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake. Animal Microbiome, 4(1). https://doi.org/10.1186/s42523-022-00170-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free