Autism spectrum disorder (ASD) is a developmental disorder which is currently only diagnosed through behavioral testing. Impaired folate‐dependent one carbon metabolism (FOCM) and transsulfuration (TS) pathways have been implicated in ASD, and recently a study involving multivariate analysis based upon Fisher Discriminant Analysis returned very promising results for predicting an ASD diagnosis. This article takes another step toward the goal of developing a biochemical diagnostic for ASD by comparing five classification algorithms on existing data of FOCM/TS metabolites, and also validating the classification results with new data from an ASD cohort. The comparison results indicate a high sensitivity and specificity for the original data set and up to a 88% correct classification of the ASD cohort at an expected 5% misclassification rate for typically‐developing controls. These results form the foundation for the development of a biochemical test for ASD which promises to aid diagnosis of ASD and provide biochemical understanding of the disease, applicable to at least a subset of the ASD population.
CITATION STYLE
Howsmon, D. P., Vargason, T., Rubin, R. A., Delhey, L., Tippett, M., Rose, S., … Hahn, J. (2018). Multivariate techniques enable a biochemical classification of children with autism spectrum disorder versus typically‐developing peers: A comparison and validation study. Bioengineering & Translational Medicine, 3(2), 156–165. https://doi.org/10.1002/btm2.10095
Mendeley helps you to discover research relevant for your work.