A portable solar-induced chlorophyll fluorescence detecting instrument based on Fraunhofer line principle was designed and tested. The instrument has a valid survey area of 1.3 × 1.3 meter when the height was fixed to 1.3 meter. The instrument uses sunlight as its light source. The instrument is quipped with two sets of special photoelectrical detectors with the centre wavelength at 760 nm and 771 nm respectively and bandwidth less than 1nm. Both sets of detectors are composed of an upper detector which are used for detecting incidence sunlight and a bottom detector which are used for detecting reflex light from the canopy of crop. This instrument includes photoelectric detector module, signal process module, A/D convert module, the data storage and upload module and human-machine interface module. The microprocessor calculates solar-induced fluorescence value based on the A/D values get from detectors. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's serial interface. The prototype was tested in the crop field and the results demonstrate that the instrument can measure the solar-induced chlorophyll value exactly with the correlation coefficients was 0.9 compared to the values got from Analytical Spectral Devices FieldSpec Pro spectrometer. This instrument can diagnose the plant growth status by the acquired spectral response. © Published under licence by IOP Publishing Ltd.
CITATION STYLE
Sun, G., Wang, X., Niu, Z., & Chen, F. (2014). Development of a canopy Solar-induced chlorophyll fluorescence measurement instrument. In IOP Conference Series: Earth and Environmental Science (Vol. 18). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/18/1/012042
Mendeley helps you to discover research relevant for your work.