Pea protein is of high interest for the food industry owing to its low allergenicity and high nutritional value. However, it often exhibits poor functionality, such as low solubility. The presence of dietary fiber in food products is beneficial for human health but may decrease the bioaccessibility of nutrients. Ultrasound, as a promising green technology, may influence properties of fibers and proteins and, thus, bioaccessibility. Therefore, this study investigated the effects of high-intensity ultrasound on the characteristics and protein bioaccessibility of protein–fiber suspensions. Suspensions containing different fiber compounds (1 wt.%) and pea protein (5 wt.%) were homogenized using high-intensity ultrasound (amplitude 116 µm, t = 150 s, energy density = 225 kJ/L, (Formula presented.) = 325 W). Owing to sonication-induced cavitation, the dispersibility of the protein was enhanced, and the viscosity of solutions containing citrus or apple fiber was increased. FE-SEM revealed the formation of different fiber–protein networks during sonication. Even if viscosity is known to have an impact on the bioaccessibility of nutrients, no restrictions on the digestibility of protein were detected during an in vitro digestion. Thus, protein uptake is probably not affected, and ultrasound can be used to modify the technofunctionality of fibers and proteins without any nutritional disadvantages.
CITATION STYLE
Kalla-Bertholdt, A. M., Baier, A. K., & Rauh, C. (2023). Influence of High-Intensity Ultrasound on Characteristics and Bioaccessibility of Pea Protein in Fiber-Enriched Suspensions. Foods, 12(17). https://doi.org/10.3390/foods12173160
Mendeley helps you to discover research relevant for your work.