Antcins are newly identified steroid-like compounds from Taiwan’s endemic medicinal mushrooms Antrodia cinnamomea and Antrodia salmonea. Scientific studies of the past two decades confirmed that antcins have various pharmacological activities, including potent anti-oxidant and anti-inflammatory effects. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease-2019 (COVID-19) pandemic and is characterized as a significant threat to global public health. It was recently identified that SARS-CoV-2 required angiotensin converting enzyme 2 (ACE2), a receptor which supports host cell entry and disease onset. Here, we report a novel function of antcins, in which antcins exhibit inhibitory effects on ACE2. Compared to the untreated control group, treatment with various antcins (antcin-A, antcin-B, antcin-C, antcin-H, antcin-I, and antcin-M) significantly inhibited ACE2 activity in cultured human epithelial cells. Indeed, among the investigated antcins, antcin-A, antcin-B, antcin-C, and antcin-I showed a pronounceable inhibition against ACE2. These findings suggest that antcins could be novel anti-ACE2 agents to prevent SARS-CoV-2 host cell entry and the following disease onset.
CITATION STYLE
Senthil Kumar, K. J., Gokila Vani, M., Hsieh, H. W., Lin, C. C., & Wang, S. Y. (2021). Antcins from antrodia cinnamomea and antrodia salmonea inhibit angiotensin-converting enzyme 2 (Ace2) in epithelial cells: Can be potential candidates for the development of sars-cov-2 prophylactic agents. Plants, 10(8). https://doi.org/10.3390/plants10081736
Mendeley helps you to discover research relevant for your work.