Engineering Shape Anisotropy of Fe3O4-γ-Fe2O3Hollow Nanoparticles for Magnetic Hyperthermia

45Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The use of microwave-assisted synthesis (in water) of α-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-γ-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mössbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m2 kg-1 (NRs) and 465 W/g and 3.3 nH m2 kg-1 (NTs), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (β-MDH) theoretical model.

Cite

CITATION STYLE

APA

Niraula, G., Coaquira, J. A. H., Zoppellaro, G., Villar, B. M. G., Garcia, F., Bakuzis, A. F., … Sharma, S. K. (2021). Engineering Shape Anisotropy of Fe3O4-γ-Fe2O3Hollow Nanoparticles for Magnetic Hyperthermia. ACS Applied Nano Materials, 4(3), 3148–3158. https://doi.org/10.1021/acsanm.1c00311

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free