Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2

395Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Angiopoietin-1 and its putative natural antagonist, angiopoietin-2, were recently isolated, and the critical role of angiopoietin-1 in embryogenic angiogenesis was demonstrated by targeted gene disruption. Specific biological effects of angiopoietin-1, however, have yet to be defined. In this study we demonstrate that angiopoietin-1, but not angiopoietin-2, is chemotactic for endothelial cells. In contrast, angiopoietin-1 as well as angiopoietin-2 exhibit no proliferative effect on endothelial cells. Excess soluble Tie2, but not Tie1 receptor, abolish the chemotactic response of endothelial cells toward angiopoietin-1. Angiopoietin-2 dose-dependently blocks directed migration toward angiopoietin-1, consistent with the role of angiopoietin-2 as a naturally occurring inhibitor of angiopoietin-1. Fibroblasts stably transfected with Tie2 receptor exhibit chemotactic responses for both angiopoietin-1 and angiopoietin-2. Fibroblasts stably expressing a transfected chimeric receptor consisting of the ectodomain of TrkC fused to the cytoplasmic domain of Tie2 also exhibit a chemotactic response to neurotrophin 3 (NT-3), a specific ligand for TrkC. Endothelial cells are shown to express angiopoietin-2 mRNA and protein, indicating the potential for autocrine activation of angiopoietin/Tie2. Finally, the demonstration that Tie2 as well as angiopoietin-1 are expressed in normal human arteries and veins suggests that the role of angiopoietin/Tie2 may extend beyond embryonic angiogenesis to maintaining integrity of the adult vasculature.

Cite

CITATION STYLE

APA

Witzenbichler, B., Maisonpierre, P. C., Jones, P., Yancopoulos, G. D., & Isner, J. M. (1998). Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. Journal of Biological Chemistry, 273(29), 18514–18521. https://doi.org/10.1074/jbc.273.29.18514

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free