Abstract
We consider a Stratonovich heat equation in (0, 1) with a nonlinear multiplicative noise driven by a trace-class Wiener process. First, the equation is shown to have a unique mild solution. Secondly, convolutional rough paths techniques are used to provide an almost sure continuity result for the solution with respect to the solution of the 'smooth' equation obtained by replacing the noise with an absolutely continuous process. This continuity result is then exploited to prove weak convergence results based on Donsker and Kac-Stroock type approximations of the noise.
Author supplied keywords
Cite
CITATION STYLE
Deya, A., Jolisy, M., & Quer-Sardanyonsz, L. (2013). The Stratonovich heat equation: A continuity result and weak approximations. Electronic Journal of Probability, 18. https://doi.org/10.1214/EJP.v18-2004
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.