Abstract
Background: A key player in the development of Alzheimer's disease (AD) is the c-secretase complex consisting of at least four components: presenilin, nicastrin, Aph-1 and Pen-2. γ-Secretase is crucial for the generation of the neurotoxic amyloid β-peptide (Aβ) but also takes part in the processing of many other substrates. In cell lines, active γ-secretase has been found to localize primarily to the Golgi apparatus, endosomes and plasma membranes. However, no thorough studies have been performed to show the subcellular localization of the active γ-secretase in the affected organ of AD, namely the brain. Principal Findings: We show by subcellular fractionation of rat brain that high γ-secretase activity, as assessed by production of Aβ40, is present in an endosome- and plasma membrane-enriched fraction of an iodixanol gradient. We also prepared crude synaptic vesicles as well as synaptic membranes and both fractions showed high Aβ40 production and contained high amounts of the γ-secretase components. Further purification of the synaptic vesicles verified the presence of the γ-secretase components in these compartments. The localization of an active γ-secretase in synapses and endosomes was confirmed in rat brain sections and neuronal cultures by using a biotinylated γ-secretase inhibitor together with confocal microscopy. Significance: The information about the subcellular localization of γ-secretase in brain is important for the understanding of the molecular mechanisms of AD. Furthermore, the identified fractions can be used as sources for highly active γ-secretase.
Cite
CITATION STYLE
Frykman, S., Hur, J. Y., Frånberg, J., Aoki, M., Winblad, B., Nahalkova, J., … Tjernberg, L. O. (2010). Synaptic and endosomal localization of active γ-secretase in rat brain. PLoS ONE, 5(1). https://doi.org/10.1371/journal.pone.0008948
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.