Acoustic tweezing of microparticles in microchannels with sinusoidal cross sections

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Acoustic tweezing of bioparticles has distinct advantages over other manipulation methods such as electrophoresis or magnetophoresis in biotechnological applications. This manipulation method guarantees the viability of the bio-particles during and after the process. In this paper, the effects of sinusoidal boundaries of a microchannel on acoustophoretic manipulation of microparticles are studied. Our results show that while top and bottom walls are vertically actuated at the horizontal half-wave resonance frequency, a large mono-vortex appears, which is never achievable in a rectangular geometry with flat walls and one-dimensional oscillations. The drag force caused by such a vortex in combination with the tilted acoustic radiation force leads to trapping and micromixing of microparticles with diameters larger and smaller than the critical size, respectively. Simulation results in this paper show that efficient particle trapping occurs at the intermediate sinusoidal boundary amplitudes. It is also indicated that in a square-sinusoidal geometry there are two strong vortices, instead of one vortex. Sub-micrometer particles tend to be trapped dramatically faster in such a geometry than in the rectangular-sinusoidal ones.

Cite

CITATION STYLE

APA

Jannesar, E. A., & Hamzehpour, H. (2021). Acoustic tweezing of microparticles in microchannels with sinusoidal cross sections. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97132-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free