Present investigation explores the possible reusability of synthetically contaminated wastewater containing crystal violet (CV) organic dye using Tectona grandis sawdust (TGSD) waste as a very low-cost adsorbent. The adsorbent was characterized by proximate, SEM/EDX, FTIR, and XRD analyses. Batch adsorption studies were carried under changing conditions of contact time, the initial concentration of CV, pH, TGSD dose, TGSD particle size, and temperature. The experimental data were tested using Langmuir, Freundlich and Temkin isotherm models, and the data were best followed by Langmuir one. The kinetic results were examined in the light of different models and pseudo-second-order was obtained to be best obeyed. The values of ΔH° (28.642 kJ/mol), ΔG° (-10.776 to -7.080 kJ/mol) and ΔS° (121.8 J/K/mol) in the temperature range of 293-323 K suggested the overall process to be spontaneous, endothermic and associated with an increase in randomness. On the basis of experimental results and their analyses, it has been established that TGSD is one of the most effective adsorbents among those obtained from the domestic, agricultural and industrial wastes. Thus this adsorbent can be effectively utilized to make the impure wastewater reusable.
CITATION STYLE
Mashkoor, F., Nasar, A., Inamuddin, & Asiri, A. M. (2018). Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26655-3
Mendeley helps you to discover research relevant for your work.