Fusing multi-modal data for supervised change detection

49Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

With the rapid development of remote sensing technology in the last decade, different modalities of remote sensing data recorded via a variety of sensors are now easily accessible. Different sensors often provide complementary information and thus a more detailed and accurate Earth observation is possible by integrating their joint information. While change detection methods have been traditionally proposed for homogeneous data, combining multi-sensor multioral data with different characteristics and resolution may provide a more robust interpretation of spatiooral evolution. However, integration of multioral information from disparate sensory sources is challenging. Moreover, research in this direction is often hindered by a lack of available multi-modal data sets. To resolve these current shortcomings we curate a novel data set for multi-modal change detection. We further propose a novel Siamese architecture for fusion of SAR and optical observations for multi-modal change detection, which underlines the value of our newly gathered data. An experimental validation on the aforementioned data set demonstrates the potentials of the proposed model, which outperforms common mono-modal methods compared against.

Cite

CITATION STYLE

APA

Ebel, P., Saha, S., & Zhu, X. X. (2021). Fusing multi-modal data for supervised change detection. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 43, pp. 243–249). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-243-2021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free