Targeting GD2 after allogeneic SCT: effector cell composition defines the optimal use of ch14.18 and the bispecific antibody construct NG-CU (GD2-CD3)

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We investigated whether T cell-recruiting bispecific anti-CD3/GD2 antibody NG-CU might be an alternative to therapeutic anti-GD2 monoclonal antibody (mAb) ch14.18, mediating complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) through natural killer (NK) cells for immunotherapy in high-risk/relapsed neuroblastoma after autologous/allogeneic stem cell transplantation (auto/alloSCT). Different antibody concentrations and effector-to-target ratios (E:T) were evaluated using xCELLigence RTCA system, peripheral blood mononuclear cells (PBMCs) (healthy donors and patients after alloSCT), and neuroblastoma cell lines (LS/LAN-1). Mean specific lysis of LS cells utilizing PBMCs from healthy donors and ch14.18 (1 µg/ml) was 40/66/75% after 12/24/48 h compared to 66/93/100% in the presence of NG-CU (100 ng/ml). NG-CU showed enhanced cytotoxicity compared to ch14.18, even at lower concentrations and E:T ratios, and completely eradicated LS cells after 72 h. To decipher the influence of effector cell subsets on lysis, different ratios of T and NK cells were tested. At a ratio of 1:1, ch14.18 was more effective than NG-CU. Using patient PBMCs taken at different time points posttransplant, significant lysis with both constructs was detectable depending on percentages and total numbers of T and NK cells; in the early posttransplant phase, NK cells were predominant and ch14.18 was superior, whereas later on, T cells represented the majority of immune cells and NG-CU was more effective. Our study highlights the importance of analyzing effector cell subsets in patients before initiating antibody-based therapy. Consequently, we propose an adjusted administration of both antibody constructs, considering the state of posttransplant immune recovery, to optimize anti-tumor activity.

Cite

CITATION STYLE

APA

Arendt, A. M., Heubach, F., Maier, C. P., Giardino, S., Jung, G., Kowalewski, E., … Lang, P. (2023). Targeting GD2 after allogeneic SCT: effector cell composition defines the optimal use of ch14.18 and the bispecific antibody construct NG-CU (GD2-CD3). Cancer Immunology, Immunotherapy, 72(11), 3813–3824. https://doi.org/10.1007/s00262-023-03536-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free