An implementation of differential evolution algorithm for a single product and single period multi-echelon supply chain network model

  • Emdadian A
  • Ponnambalam S
  • Kanagaraj G
N/ACitations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In this paper, five variants of Differential Evolution (DE) algorithms are proposed to solve the multi-echelon supply chain network optimization problem. Supply chain network composed of different stages which involves products, services and information flow between suppliers and customers, is a value-added chain that provides customers products with the quickest delivery and the most competitive price. Hence, there is a need to optimize the supply chain by finding the optimum configuration of the network in order to get a good compromise between several objectives. The supply chain problem utilized in this study is taken from literature which incorporates demand, capacity, raw-material availability, and sequencing constraints in order to maximize total profitability. The performance of DE variants has been investigated by solving three stage multi-echelon supply chain network optimization problems for twenty demand scenarios with each supply chain settings. The objective is to find the optimal alignment of procurement, production, and distribution while aiming towards maximizing profit. The results show that the proposed DE algorithm is able to achieve better performance on a set of supply chain problem with different scenarios those obtained by well-known classical GA and PSO.

Cite

CITATION STYLE

APA

Emdadian, A., Ponnambalam, S. G., & Kanagaraj, G. (2018). An implementation of differential evolution algorithm for a single product and single period multi-echelon supply chain network model. Journal of Modern Manufacturing Systems and Technology, 1, 1–14. https://doi.org/10.15282/jmmst.v1i1.196

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free