Retained metabolic activity in honey bee collected pollen has implications for pollen digestion and effects on honey bee health

5Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The mechanisms by which pollen is digested by honey bees are incompletely understood. Potential methods are thought to include pseudogermination, mechanical disruption, enzymatic breakdown, or osmotic shock. Understanding the role of pseudogermination in this process has been hampered by a lack of tools demonstrating retention of metabolic activity in pollen collected by honey bees. Here, we show that pollen collected by honey bees produces reactive oxygen species (ROS) at robust levels upon germination, suggesting that ROS is a suitable marker of this process in pollen. ROS can be readily found in the digestive tract of honey bees and is localized to pollen grains within the lumen. Finally, manipulating pollen levels in the midgut can change ROS levels in the digestive tract. These data provide evidence of retained metabolic activity in bee-collected pollen that lends support to pseudogermination as a mechanism for pollen digestion in honey bees, and points to novel approaches for better understanding of pollen digestion in this species and beyond.

Cite

CITATION STYLE

APA

McKinstry, M., Prado-Irwin, S. R., Adames, T. R., & Snow, J. W. (2020). Retained metabolic activity in honey bee collected pollen has implications for pollen digestion and effects on honey bee health. Apidologie, 51(2), 212–225. https://doi.org/10.1007/s13592-019-00703-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free