Thermalization by a synthetic horizon

Citations of this article
Mendeley users who have this article in their library.


Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we establish the emergence of a thermal state accompanying the formation of a synthetic horizon. The resulting temperature for long chains is shown to be identical to the corresponding Unruh temperature, provided that the postquench Hamiltonian matches the entanglement Hamiltonian of the prequench system. Based on detailed analysis of the outgoing radiation we formulate the conditions required for the synthetic horizon to behave as a purely thermal source, paving a way to explore this interplay of quantum-mechanical and gravitational aspects experimentally.




Mertens, L., Moghaddam, A. G., Chernyavsky, D., Morice, C., Van Den Brink, J., & Van Wezel, J. (2022). Thermalization by a synthetic horizon. Physical Review Research, 4(4).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free