In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca 2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+] i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg 2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+] i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg 2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na +/K+ ATPase caused comparable [Mg2+] i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.
CITATION STYLE
Müller, A., Günzel, D., & Schlue, W. R. (2003). Activation of AMPA/Kainate Receptors but Not Acetylcholine Receptors Causes Mg2+ Influx into Retzius Neurones of the Leech Hirudo medicinalis. Journal of General Physiology, 122(6), 727–739. https://doi.org/10.1085/jgp.200308851
Mendeley helps you to discover research relevant for your work.