A numerical analysis research on earlier behavior of molten droplet covered with vapor film at the stage of triggering and propagation in steam explosion

5Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

When the molten fuel with high temperature falls into the cavity water, it will be dispersed into droplets which are covered with vapor films due to the rapid heat transfer with phase transition. This situation cannot be simply described by liquid-liquid or gas-liquid systems. And there are no sufficient experimental studies on the behavior of droplet covered with vapor film because of the rapid reaction and the difficulty in capture of the film configuration. In this paper, a multiphase code with the volume of fluid (VOF) method is used to simulate the earlier behavior of droplet when vapor film exits. The earlier behavior is defined as behavior of the droplet before its disintegration. Thermal effect and pure hydrodynamic effect are, respectively, considered. The simulation results indicate that the film thickness and material density have significant effect on the earlier behavior of droplet. The situation assumed in Ciccarelli and Frost's model (1994) is observed in current simulation of earlier thermal droplet behavior. The effect of triggering pressure pulse on earlier hydrodynamic behavior is also discussed and it indicates that vapor film has little effect on the hydrodynamic droplet deformation when the intensity of the pressure pulse is very high.

Cite

CITATION STYLE

APA

Zhong, M., Li, Y., Lin, M., Yuan, M., & Yang, Y. (2014). A numerical analysis research on earlier behavior of molten droplet covered with vapor film at the stage of triggering and propagation in steam explosion. Science and Technology of Nuclear Installations, 2014. https://doi.org/10.1155/2014/301262

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free