Energy storage technologies (ESTs) play a crucial role in ensuring energy security and addressing the challenges posed by climate change. They enable us to overcome the mismatch between energy supply and demand caused by the intermittent and unpredictable nature of renewable energy sources. The identification of research frontiers in ESTs has primarily relied on expert experience and has been limited to specific areas of study. However, there is a relative lack of data-driven approaches to identify these frontiers. In this study, we employed an integrated technique combining bibliographic coupling and sliding window analysis to identify the research frontiers in ESTs and understand their evolution over time. Our study reveals 19 research frontiers in ESTs distributed across four knowledge domains: electrochemical energy storage, electrical energy storage, chemical energy storage, and energy storage systems. Among these frontiers, two noteworthy areas are aqueous zinc batteries (AZBs) and two-dimensional transition metal carbon-nitride composites (MXenes). By identifying these research frontiers, our study provides insights into the potential future directions for research and development (R&D) deployment in energy storage technologies.
CITATION STYLE
Wu, T., Wang, J. W., Qu, S., Mi, Z., & Wei, Y. M. (2023). Frontiers of Energy Storage Technologies. International Journal of Energy Research. Wiley-Hindawi. https://doi.org/10.1155/2023/7138669
Mendeley helps you to discover research relevant for your work.