PID Control Model Based on Back Propagation Neural Network Optimized by Adversarial Learning-Based Grey Wolf Optimization

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

In processes of industrial production, the online adaptive tuning method of proportional-integral-differential (PID) parameters using a neural network is found to be more appropriate than a conventional controller with PID for controlling different industrial processes with varying characteristics. However, real-time implementation and high reliability require the adjustment of specific model parameters. Therefore, this paper proposes a PID controller that combines a back-propagation neural network (BPNN) and adversarial learning-based grey wolf optimization (ALGWO). To enhance the unpredictable behavior and capacity for exploration of the grey wolf, this study develops a new parameter-learning technique. Alpha gray wolves use the random walk of levy flight as their hunting method. In beta and delta gray wolves, a search strategy centering on the top gray wolf is employed, and in omega gray wolves, the decision wolves handle the confrontation strategy. A fair balance between exploration and exploitation can be achieved, as evidenced by the success of the adversarial learning-based grey wolf optimization technique in ten widely used benchmark functions. The effectiveness of different activation functions in conjunction with ALGWO were evaluated in resolving the parameter adjustment issue of the BPNN model. The results demonstrate that no unique activation function outperforms others in different controlled systems, but their fitnesses are significantly inferior to those of the conventional PID controller.

Cite

CITATION STYLE

APA

Liu, H., Yu, Q., & Wu, Q. (2023). PID Control Model Based on Back Propagation Neural Network Optimized by Adversarial Learning-Based Grey Wolf Optimization. Applied Sciences (Switzerland), 13(8). https://doi.org/10.3390/app13084767

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free