(K0.5Na0.5)NbO3 + x wt.% Dy 2O3 (x = 0-1.5) ferroelectric ceramics were prepared by conventional solid state reaction method. XRD patterns revealed that orthorhombic symmetry has transformed into psuedocubic symmetry with increasing the substitution of Dy3+ in the Na+ site. Temperature and frequency dependences of relative dielectric permittivity maximum conforms the transformation from normal ferroelectric to relaxor ferroelectric behaviour. Frequency dependence of the relative dielectric permittivity maximum temperature observed for the samples with x ≥ 1.0 and satisfied the Vogel-Fulcher law. The diffuseness exponent γ(1.27-1.95) estimated from the high temperature slopes of the diffused dielectric permittivity data reveals that the degree of relaxor behavior increases with increasing the amount of Dy2O 3. The temperature dependence of AC-conductivity σAC (T) analysis in the range 310 K < T < 470 K reveals the existence of variable range hopping of charge carriers with average hopping length R H and hopping energy EH are in the range 8.5-27 Å and 48-153 meV, respectively. Voltage dependent dielectric constant measurements confirm the ferroelectric nature of KNN+ x wt% Dy2O3 ceramics. © 2014 Author(s).
CITATION STYLE
Peddigari, M., Thota, S., & Pamu, D. (2014). Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5)NbO3 ceramics. AIP Advances, 4(8). https://doi.org/10.1063/1.4892856
Mendeley helps you to discover research relevant for your work.