In this study, the structural changes of alkali lignin induced by ozonation were investigated, and the effect of ozone-treated alkali lignin and its mechanism on Avicel enzymatic hydrolysis was examined. The physicochemical properties of alkali lignin were analyzed by FTIR,1H-13C HSQC NMR, and GPC. It was revealed that ozone pretreatment increased the content of carboxyl and/or aldehyde groups and the negative zeta potential of alkali lignin, which enhanced the electrostatic repulsion between alkali lignin and cellulase; The S/G ratio was reduced, indicating the hydrophobic interaction was diminished. The Langmuir adsorption isotherm showed that the cellulase binding strength of ozone pretreated alkali lignin (OL-pH3, OL-pH7, and OL-pH12 were 16.67, 13.87, and 44.05 mL/g, respectively) was significantly lower than that of alkali lignin (161.29 mL/g). The 72 h hydrolysis yields of Avicel added with OL-pH3, OL-pH7, and OL-pH12 were 55.4%, 58.6%, and 54.9% respectively, which were 2.6–6.3% higher than that of Avicel added with AL (52.3%). This research aimed to reduce the non-productive adsorption between cellulase and lignin by investigating the structural changes of lignin caused by ozone treatment. For the first time, we discovered that ozone-treated alkali lignin has a further promotion effect on the enzymatic digestion of cellulose, providing a green and feasible pretreatment process for the enzymatic hydrolysis of lignocellulose and aiding in the more efficient utilization of biomass.
CITATION STYLE
Wang, H., Zhao, L., Ren, J., & He, B. (2022). Structural Changes of Alkali Lignin under Ozone Treatment and Effect of Ozone-Oxidized Alkali Lignin on Cellulose Digestibility. Processes, 10(3). https://doi.org/10.3390/pr10030559
Mendeley helps you to discover research relevant for your work.