Undoped and aluminum-doped ZnO thin films are prepared by the sol-gel spin-coating process. Zinc acetate dihydrate, ethanol and mono-ethanolamine are used as precursor, solvent and stabilizer, respectively. The atomic percentage of dopant in solution were [Al/Zn] = 1 %, 2 % and 3 %. The effect of Al doping on the optical and electrical properties of ZnO films was investigated by X-ray diffraction (XRD), Four-Point probe technique and UV-visible spectrophotometery. The results from the X-ray diffraction show that the pure ZnO thin films had a polycrystalline structure of the hexagonal Wurtzite Type. A minimum resistivity of 3.3 × 10 - 3 Ω · cm was obtained for the film doped with 2 mol % Al. Optical transmissions reveal a good transmittance within the visible wavelength spectrum region for all of the films. The value of the band gap is enhanced from 3.21 eV (undoped ZnO) to 3.273 eV (Al/Zn = 3 %), the increase in the band gap can be explained by the Burstein-Moss effect. © 2013 The Author(s).
CITATION STYLE
Ammaih, Y., Lfakir, A., Hartiti, B., Ridah, A., Thevenin, P., & Siadat, M. (2014). Structural, optical and electrical properties of ZnO:Al thin films for optoelectronic applications. Optical and Quantum Electronics, 46(1), 229–234. https://doi.org/10.1007/s11082-013-9757-2
Mendeley helps you to discover research relevant for your work.