ATP-dependent infra-slow (<0.1 Hz) oscillations in thalamic networks

92Citations
Citations of this article
116Readers
Mendeley users who have this article in their library.

Abstract

An increasing number of EEG and resting state fMRI studies in both humans and animals indicate that spontaneous low frequency fluctuations in cerebral activity at ,0.1 Hz (infra-slow oscillations, ISOs) represent a fundamental component of brain functioning, being known to correlate with faster neuronal ensemble oscillations, regulate behavioural performance and influence seizure susceptibility. Although these oscillations have been commonly indicated to involve the thalamus their basic cellular mechanisms remain poorly understood. Here we show that various nuclei in the dorsal thalamus in vitro can express a robust ISO at ∼0.005-0.1 Hz that is greatly facilitated by activating metabotropic glutamate receptors (mGluRs) and/or Ach receptors (AchRs). This ISO is a neuronal population phenomenon which modulates faster gap junction (GJ)-dependent network oscillations, and can underlie epileptic activity when AchRs or mGluRs are stimulated excessively. In individual thalamocortical neurons the ISO is primarily shaped by rhythmic, long-lasting hyperpolarizing potentials which reflect the activation of A1 receptors, by ATP-derived adenosine, and subsequent opening of Ba2+-sensitive K+ channels. We argue that this ISO has a likely non-neuronal origin and may contribute to shaping ISOs in the intact brain. © 2009 Lorincz et al.

Cite

CITATION STYLE

APA

Lorincz, M. L., Geall, F., Bao, Y., Crunelli, V., & Hughes, S. W. (2009). ATP-dependent infra-slow (<0.1 Hz) oscillations in thalamic networks. PLoS ONE, 4(2). https://doi.org/10.1371/journal.pone.0004447

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free