The green supply chain management (GSCM) is an enterprise's effort to protect the environment and a key way to achieve sustainable environmental development. On the contrary, globalization brings more risks to the supply chain. Resilience has become a critical definition in supply chain management to help enterprises review the disruption and return to normal state. Therefore, choosing a resilient-green supplier to build a supply chain environment with flexibility and greenness under interruption becomes necessary for research works. However, the existing studies tended to focus on only one of the factors with resilience and greenness, and no comprehensive criteria system and performance value is expressed by a crisp number. Therefore, this paper proposes a hybrid method which integrates the Best-Worst method (BWM), Weighted Aggregated Sum-Product Assessment (WASPAS), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to solve the critical problems. Firstly, BWM is used to weigh the criteria; secondly, intuitionistic fuzzy numbers are introduced into the ranking stage. Then, the integrated WASPAS and TOPSIS are used to rank the alternatives to select the optimal resilient-green supplier. Finally, an illustrative example proves the feasibility of this method.
CITATION STYLE
Xiong, L., Zhong, S., Liu, S., Zhang, X., & Li, Y. (2020). An Approach for Resilient-Green Supplier Selection Based on WASPAS, BWM, and TOPSIS under Intuitionistic Fuzzy Sets. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/1761893
Mendeley helps you to discover research relevant for your work.