Abstract
The control of Plasmodium falciparum erythrocytic parasite density is essential for protection against malaria, because it prevents pathogenesis and progression toward severe disease. P falciparum blood-stage parasite cultures are inhibited by human Vγ9Vδ2 γδ T cells, but the underlying mechanism remains poorly understood. Here, we show that both intraerythrocytic parasites and the extracellular red blood cell-invasive merozoites specifically activate Vγ9Vδ2 T cells in a γδ T cell receptor-dependent manner and trigger their degranulation. In contrast, the γδ T cell-mediated antiparasitic activity only targets the extracellular merozoites. Using perforin-deficient and granulysin- silenced T-cell lines, we demonstrate that granulysin is essential for the in vitro antiplasmodial process, whereas perforin is dispensable. Patients infected with P falciparum exhibited elevated granulysin plasma levels associated with high levels of granulysin-expressing Vδ2+T cells endowed with parasite-specific degranulation capacity. This indicates in vivo activation of Vγ9Vδ2 T cells along with granulysin triggering and discharge during primary acute falciparum malaria. Altogether, this work identifies Vγ9Vδ2 T cells as unconventional immune effectors targeting the red blood cell-invasive extracellular P falciparum merozoites and opens novel perspectives for immune interventions harnessing the antiparasitic activity of Vγ9Vδ2 T cells to control parasite density in malaria patients. © 2011 by The American Society of Hematology.
Cite
CITATION STYLE
Giulia, C., Loizon, S., Guenot, M., Mocan, I., Halary, F., De Saint-Basile, G., … Behr, C. (2011). Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell-invasive merozoites. Blood, 118(26), 6952–6962. https://doi.org/10.1182/blood-2011-08-376111
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.