The details of auditory response at the subthreshold level in the rodent primary somatosensory cortex, the barrel cortex, have not been studied extensively, although several phenomenological reports have been published. Multisensory features may act as neuronal representations of links between inputs from one sensory modality to other sensory modalities. Here, we examined the basic multisensory postsynaptic responses in the rodent barrel cortex using in vivo whole-cell recordings of neurons. We observed robust responses to acoustic stimuli in most barrel cortex neurons. Acoustically evoked responses were mediated by hearing and reached approximately 60% of the postsynaptic response amplitude elicited by strong somatosensory stimuli. Compared to tactile stimuli, auditory stimuli evoked postsynaptic potentials with a longer latency and longer duration. Specifically, auditory stimuli in barrel cortex neurons appeared to trigger “up states”, episodes associated with membrane depolarization and increased synaptic activity. Taken together, our data suggest that barrel cortex neurons have multisensory properties, with distinct synaptic mechanisms underlying tactile and non-tactile responses.
CITATION STYLE
Maruyama, A. T., & Komai, S. (2018). Auditory-induced response in the primary sensory cortex of rodents. PLoS ONE, 13(12). https://doi.org/10.1371/journal.pone.0209266
Mendeley helps you to discover research relevant for your work.