Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: A promising agent for the treatment of endometriosis

29Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Context: During the development of endometriotic lesions, excess fibrosis may lead to scarring and to the alterations of tissue function that are the characteristic features of this disease. Enhanced extracellular matrix contractility of endometriotic stromal cells (ECSC) mediated by the mevalonate- Ras homology (Rho)/Rho-associated coiled-coil-forming protein kinase (ROCK) pathway has been shown to contribute to the pathogenesis of endometriosis. Design: To assess the use of fasudil, a selective ROCK inhibitor, for the medical treatment of endometriosis-associated fibrosis, the effects of this agent on the cell proliferation, apoptosis, cell cycle, morphology, cell density, and contractility of ECSC were investigated. The effects of fasudil on the expression of contractility-related, apoptosis-related, and cell cycle-related molecules in ECSC were also evaluated. Results: Fasudil significantly inhibited the proliferation and contractility of ECSC and induced the cell cycle arrest in the G2/M phase and apoptosis of these cells. Morphological observation revealed the suppression of ECSC attachment to collagen fibers and decrease of cell density by fasudil. The expression of α-smooth muscle actin, RhoA, ROCK-I, and ROCK-II proteins was inhibited by fasudil administration. The expression of the antiapoptotic factors, Bcl-2 and Bcl-X L, in two-dimensional cultured ECSC were down-regulated by the addition of fasudil, whereas, the expression of p16 INK4a and p21 Waf1/Cip1 was up-regulated by the addition of fasudil. Conclusions: The present findings suggest that fasudil is a promising agent for the treatment of endometriosis. The inhibition of cell proliferation, contractility, and myofibroblastic differentiation, the attenuation of attachment to collagen fibers, the decrease of cell density, and the induction of cell cycle arrest and apoptosis of ECSC are involved in the active mechanisms of fasudil. Copyright © 2011 by The Endocrine Society.

Cite

CITATION STYLE

APA

Tsuno, A., Nasu, K., Kawano, Y., Yuge, A., Li, H., Abe, W., & Narahara, H. (2011). Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: A promising agent for the treatment of endometriosis. Journal of Clinical Endocrinology and Metabolism, 96(12). https://doi.org/10.1210/jc.2011-1503

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free