Deep brain stimulation (DBS) can alleviate the movement disorders like Parkinson’s disease (PD). Indeed, it is known that aberrant beta (13-30 Hz) oscillations and the loss of dopaminergic neurons in the basal ganglia-thalamus (BGTH) and cortex characterize the akinesia symptoms of PD. However, the relevant biophysical mechanism behind this process still remains unclear. Based on the prior striatal inhibitory model, we propose an extended BGTH model incorporating medium spine neurons (MSNs) and fast-spiking interneurons (FSIs) along with the effect of DBS. We are focusing in this paper on an open-loop DBS mode, where the stimulation parameters stay constant independent of variations in the disease state, and modifications of parameters rely mainly on trial and error of medical experts. Additionally, we propose a novel combined model of the cerebellar-basal-ganglia thalamocortical network, MSNs, and FSIs and show new results that indicate that Parkinsonian oscillations in the beta-band frequency range emerge from the dynamics of such a network. Our model predicts that DBS can be used to suppress beta oscillations in globus pallidus pars interna (GPi) neurons. This research will help our better understanding of the changes in the brain activity caused by DBS, providing new insight for studying PD in the future.
CITATION STYLE
Shaheen, H., & Melnik, R. (2022). Deep Brain Stimulation with a Computational Model for the Cortex-Thalamus-Basal-Ganglia System and Network Dynamics of Neurological Disorders. Computational and Mathematical Methods, 2022, 1–17. https://doi.org/10.1155/2022/8998150
Mendeley helps you to discover research relevant for your work.