Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation

64Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Background: Uncoupling protein 1 (UCP1) plays an important role in increasing energy expenditure; thus, it is being considered as a new target for preventing obesity and metabolic complications. In this study, we investigated the effect of quercetin, a naturally occurring flavonoid, on UCP1 expression in white/brown adipose tissues (WAT/BAT). Methods: Mice were fed a high-fat diet (HFD) supplemented with or without dietary quercetin for 9 weeks, and 3T3-L1 adipocytes were treated with quercetin. Expression of UCP1 and other thermogenic genes/proteins was measured by real-time polymerase chain reaction and/or Western blotting. Results: Dietary quercetin supplementation increased the level of UCP1 in both WAT and/or BAT of HFD-fed obese mice, which was accompanied by upregulated mRNA levels of thermogenesis-related genes. Quercetin supplementation enhanced the plasma norepinephrine level and tended to upregulate β-adrenergic receptor mRNA level in the WAT of HFD-fed obese mice, accompanied by AMP-activated protein kinase (AMPK) activation. Moreover, quercetin enhanced UCP1 expression in 3T3-L1 adipocytes, and this was blunted by treatment with a peroxisome proliferator-activated receptor gamma (PPARγ) antagonist. Conclusion: These findings suggest that quercetin upregulates UCP1, implying increased WAT browning and BAT activity, via activation of the AMPK/PPARγ pathway through sympathetic stimulation. Quercetin may be useful for preventing obesity and metabolic complications.

Cite

CITATION STYLE

APA

Choi, H., Kim, C. S., & Yu, R. (2018). Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation. Journal of Obesity and Metabolic Syndrome, 27(2), 102–109. https://doi.org/10.7570/JOMES.2018.27.2.102

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free