Nanopatterning of weak links in superconducting oxide interfaces

7Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO), hosts a quasi-two-dimensional electron gas (q2DEG), two-dimensional superconductivity, ferromagnetism, and giant Rashba spin-orbit coupling. The co-existence of two-dimensional superconductivity with gate-tunable spin-orbit coupling and multiband occupation is of particular interest for the realization of unconventional superconducting pairing. To investigate the symmetry of the superconducting order parameter, phase sensitive measurements of the Josephson effect are required. We describe an approach for the fabrication of artificial superconducting weak links at the LAO/STO interface using direct high-resolution electron beam lithography and low-energy argon ion beam irradiation. The method does not require lift-off steps or sacrificial layers. Therefore, resolution is only limited by the electron beam lithography and pattern transfer. We have realized superconducting weak links with a barrier thickness of 30–100 nm. The barrier transparency of the weak links can be controlled by the irradiation dose and further tuned by a gate voltage. Our results open up new possibilities for the realization of quantum devices in oxide interfaces.

Cite

CITATION STYLE

APA

Singh, G., Lesne, E., Winkler, D., Claeson, T., Bauch, T., Lombardi, F., … Kalaboukhov, A. (2021). Nanopatterning of weak links in superconducting oxide interfaces. Nanomaterials, 11(2), 1–11. https://doi.org/10.3390/nano11020398

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free