A machine learning approach for real-time selection of preventive actions improving power network resilience

17Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Power outages due to cascading failures which are triggered by extreme weather pose an increasing risk to modern societies and draw attention to an emerging need for power network resilience. Machine learning (ML) is used for a real-time selection process on preventive actions, such as topology reconfiguration and islanding, aiming to reduce the risk of cascading failures. Training data is obtained from Monte Carlo simulations of cascading failures triggered by extreme events. The trained ML-based decision-making process uses only predictors that are readily available prior to an extreme event, such as event location and intensity, network topology and load, and requires no further time-consuming simulations.The proposed decision-making process is compared to time-consuming but ideal decision-making and fast but trivial decision-making. Demonstrations on the German transmission network show that the proposed ML-based selection process efficiently prevents the uncontrolled propagation of cascading failures and performs similarly to an ideal decision-making process whilst being computationally three orders of magnitude faster.

Cite

CITATION STYLE

APA

Noebels, M., Preece, R., & Panteli, M. (2022). A machine learning approach for real-time selection of preventive actions improving power network resilience. IET Generation, Transmission and Distribution, 16(1), 181–192. https://doi.org/10.1049/gtd2.12287

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free