Abstract
Background: Extracellular vesicles (EVs) are endogenous membrane vesicles with a diameter of 30–200 nm. It has been reported that hypoxic cancer cells can release numerous EVs to mediate multiple regional and systemic effects in the tumor microenvironment. Methods: In this study, we used ultracentrifugation to extract EVs secreted by TE-13, an esophageal squamous carcinoma (ESCC) cell line during normoxia and hypoxia and performed high-throughput sequencing to detect exosomal miRNAs. Gene ontology (GO) and KEGG pathway analyses were used to reveal pathways potentially regulated by the miRNAs. Results: A total of 10 810 miRNAs were detected; 50 were significantly upregulated and 34 were significantly downregulated under hypoxic environment. GO analysis identified enrichment of protein binding, regulation of transcription (DNA-templated), and membrane as molecular function, biological process, and cellular component, respectively. KEGG pathway analysis revealed cancer-associated pathways, phospholipase D signaling pathway, autophagy, focal adhesion and AGE-RAGE signaling as the key pathways. Further verification experiment from qRT-PCR indicated that miR-128-3p, miR-140-3p, miR-340-5p, miR-452-5p, miR-769-5p and miR-1304-p5 were significantly upregulated in EVs from hypoxia TE-13 cells while miR-340-5p was significantly upregulated in two other ESCC cells, ECA109 and TE-1. Conclusion: This study, for the first time reveals changes in the expression of exosomal miRNAs in hypoxic ESCC cells and these findings will act as a resource to study the hypoxic tumor microenvironment and ESCC EVs.
Author supplied keywords
Cite
CITATION STYLE
Chen, F., Chu, L., Li, J., Shi, Y., Xu, B., Gu, J., … Sun, X. (2020). Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells. Thoracic Cancer, 11(3), 570–580. https://doi.org/10.1111/1759-7714.13295
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.