Incorporating real-world evidence into the development of patient blood glucose prediction algorithms for the ICU

11Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective: Glycemic control is an important component of critical care. We present a data-driven method for predicting intensive care unit (ICU) patient response to glycemic control protocols while accounting for patient heterogeneity and variations in care. Materials and Methods: Using electronic medical records (EMRs) of 18 961 ICU admissions from the MIMIC-III dataset, including 318 574 blood glucose measurements, we train and validate a gradient boosted tree machine learning (ML) algorithm to forecast patient blood glucose and a 95% prediction interval at 2-hour intervals. The model uses as inputs irregular multivariate time series data relating to recent in-patient medical history and glycemic control, including previous blood glucose, nutrition, and insulin dosing. Results: Our forecasting model using routinely collected EMRs achieves performance comparable to previous models developed in planned research studies using continuous blood glucose monitoring. Model error, expressed as mean absolute percentage error is 16.5%-16.8%, with Clarke error grid analysis demonstrating that 97% of predictions would be clinically acceptable. The 95% prediction intervals achieve near intended coverage at 93%-94%. Discussion: ML algorithms built on observational data sources, such as EMRs, present a promising approach for personalization and automation of glycemic control in critical care. Future research may benefit from applying a combination of methodologies and data sources to develop robust methodologies that account for the variations seen in ICU patients and difficultly in detecting the extremes of observed blood glucose values. Conclusion: We demonstrate that EMRs can be used to train ML algorithms that may be suitable for incorporation into ICU decision support systems.

Cite

CITATION STYLE

APA

Fitzgerald, O., Perez-Concha, O., Gallego, B., Saxena, M. K., Rudd, L., Metke-Jimenez, A., & Jorm, L. (2021). Incorporating real-world evidence into the development of patient blood glucose prediction algorithms for the ICU. Journal of the American Medical Informatics Association, 28(8), 1642–1650. https://doi.org/10.1093/jamia/ocab060

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free