Cognitive Models in Cybersecurity: Learning From Expert Analysts and Predicting Attacker Behavior

19Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.

Abstract

Cybersecurity stands to benefit greatly from models able to generate predictions of attacker and defender behavior. On the defender side, there is promising research suggesting that Symbolic Deep Learning (SDL) may be employed to automatically construct cognitive models of expert behavior based on small samples of expert decisions. Such models could then be employed to provide decision support for non-expert users in the form of explainable expert-based suggestions. On the attacker side, there is promising research suggesting that model-tracing with dynamic parameter fitting may be used to automatically construct models during live attack scenarios, and to predict individual attacker preferences. Predicted attacker preferences could then be exploited for mitigating risk of successful attacks. In this paper we examine how these two cognitive modeling approaches may be useful for cybersecurity professionals via two human experiments. In the first experiment participants play the role of cyber analysts performing a task based on Intrusion Detection System alert elevation. Experiment results and analysis reveal that SDL can help to reduce missed threats by 25%. In the second experiment participants play the role of attackers picking among four attack strategies. Experiment results and analysis reveal that model-tracing with dynamic parameter fitting can be used to predict (and exploit) most attackers' preferences 40−70% of the time. We conclude that studies and models of human cognition are highly valuable for advancing cybersecurity.

Cite

CITATION STYLE

APA

Veksler, V. D., Buchler, N., LaFleur, C. G., Yu, M. S., Lebiere, C., & Gonzalez, C. (2020). Cognitive Models in Cybersecurity: Learning From Expert Analysts and Predicting Attacker Behavior. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.01049

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free