β-Methylphenylalanine exerts neuroprotective effects in a Parkinson's disease model by protecting against tyrosine hydroxylase depletion

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We evaluated the neuroprotective effects of β-methylphenylalanine in an experimental model of rotenone-induced Parkinson's disease (PD) in SH-SY5Y cells and rats. Cells were pre-treated with rotenone (2.5 µg/mL) for 24 hours followed by β-methylphenylalanine (1, 10 and 100 mg/L) for 72 hours. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), mitochondrial fragmentation, apoptosis, and mRNA and protein levels of tyrosine hydroxylase were determined. In a rat model of PD, dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels, bradykinesia and tyrosine hydroxylase expression were determined. In rotenone–pre-treated cells, β-methylphenylalanine significantly increased cell viability and MMP, whereas ROS levels, apoptosis and fragmented mitochondria were reduced. β-Methylphenylalanine significantly increased the mRNA and protein levels of tyrosine hydroxylase in SH-SY5Y cells. In the rotenone-induced rat model of PD, oral administration of β-methylphenylalanine recovered DA and DOPAC levels and bradykinesia. β-Methylphenylalanine significantly increased the protein expression of tyrosine hydroxylase in the striatum and substantia nigra of rats. In addition, in silico molecular docking confirmed binding between tyrosine hydroxylase and β-methylphenylalanine. Our experimental results show neuroprotective effects of β-methylphenylalanine via the recovery of mitochondrial damage and protection against the depletion of tyrosine hydroxylase. We propose that β-methylphenylalanine may be useful in the treatment of PD.

Cite

CITATION STYLE

APA

Feng, Y., Ma, J., & Yuan, L. (2020). β-Methylphenylalanine exerts neuroprotective effects in a Parkinson’s disease model by protecting against tyrosine hydroxylase depletion. Journal of Cellular and Molecular Medicine, 24(17), 9871–9880. https://doi.org/10.1111/jcmm.15571

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free