Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans

34Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Outer membrane vesicles (OMV) are exosomes naturally released from the surface of Gram-negative bacteria. Since the ’80s, OMVs have been proposed as powerful vaccine platforms due to their intrinsic self-adjuvanticity and ability to present multiple antigens in natural conformation. However, the presence of several pathogen-associated molecular patterns (PAMPs), especially lipid A, has raised concerns about potential systemic reactogenicity in humans. Recently, chemical and genetic approaches allowed to efficiently modulate the balance between reactogenicity and immunogenicity for the use of OMV in humans. Several assays (monocyte activation test, rabbit pyrogenicity test, limulus amebocyte lysate, human transfectant cells, and toxicology studies) were developed to test, with highly predictive potential, the risk of reactogenicity in humans before moving to clinical use. In this review, we provide a historical perspective on how different assays were and can be used to successfully evaluate systemic reactogenicity during clinical development and after licensure.

Cite

CITATION STYLE

APA

Rossi, O., Citiulo, F., & Mancini, F. (2020). Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans. Human Vaccines and Immunotherapeutics. Bellwether Publishing, Ltd. https://doi.org/10.1080/21645515.2020.1780092

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free