Theoretical and Experimental Research of Hydrogen Solid Solution in Mg and Mg-Al System

17Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The study of hydrogen storage properties of Mg-based thin films is of interest due to their unique composition, interface, crystallinity, and high potential for use in hydrogen-storage systems. Alloying Mg with Al leads to the destabilization of the magnesium hydride reducing the heat of reaction, increases the nucleation rate, and decreases the dehydriding temperature. The purpose of our study is to reveal the role of the aluminum atom addition in hydrogen adsorption and accumulation in the Mg-H solid solution. Ab initio calculations of aluminum and hydrogen binding energies in magnesium were carried out in the framework of density functional theory. Hydrogen distribution and accumulation in Mg and Mg-10%Al thin films were experimentally studied by the method of glow-discharge optical emission spectroscopy and using a hydrogen analyzer, respectively. It was found that a hydrogen distribution gradient is observed in the Mg-10%Al coating, with more hydrogen on the surface and less in the bulk. Moreover, the hydrogen concentration in the Mg-10%Al is lower compared to Mg. This can be explained by the lower hydrogen binding energy in the magnesium-aluminum system compared with pure magnesium.

Cite

CITATION STYLE

APA

Lyu, J., Elman, R. R., Svyatkin, L. A., & Kudiiarov, V. N. (2022). Theoretical and Experimental Research of Hydrogen Solid Solution in Mg and Mg-Al System. Materials, 15(5). https://doi.org/10.3390/ma15051667

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free