Abstract
The degradation of the herbicide dicamba is initiated by demethylation to form 3,6-dichlorosalicylate (3,6-DCSA) in Rhizorhabdus dicambivorans Ndbn-20. In the present study, a 3,6-DCSA degradation-deficient mutant, Ndbn-20m, was screened. A cluster, dsmR1DABCEFGR2, was lost in this mutant. The cluster consisted of nine genes, all of which were apparently induced by 3,6-DCSA. DsmA shared 30 to 36% identity with the monooxygenase components of reported three-component cytochrome P450 systems and formed a monophyletic branch in the phylogenetic tree. DsmB and DsmC were most closely related to the reported [2Fe-2S] ferredoxin and ferredoxin reductase, respectively. The disruption of dsmA in strain Ndbn-20 resulted in inactive 3,6-DCSA degradation. When dsmABC, but not dsmA alone, was introduced into mutant Ndbn-20m and Sphingobium quisquiliarum DC-2 (which is unable to degrade salicylate and its derivatives), they acquired the ability to hydroxylate 3,6-DCSA. Single-crystal X-ray diffraction demonstrated that the DsmABC-catalyzed hydroxylation occurred at the C-5 position of 3,6-DCSA, generating 3,6-dichlorogentisate (3,6-DCGA). In addition, DsmD shared 51% identity with GtdA (a gentisate and 3,6-DCGA 1,2-dioxygenase) from Sphingomonas sp. strain RW5. However, unlike GtdA, the purified DsmD catalyzed the cleavage of gentisate and 3-chlorogentisate but not 6-chlorogentisate or 3,6-DCGA in vitro. Based on the bioinformatic analysis and gene function studies, a possible catabolic pathway of dicamba in R. dicambivorans Ndbn-20 was proposed.
Author supplied keywords
Cite
CITATION STYLE
Li, N., Yao, L., He, Q., Qiu, J., Cheng, D., Ding, D., … Jiang, J. (2018). 3,6-Dichlorosalicylate catabolism is initiated by the DsmABC cytochrome P450 monooxygenase system in Rhizorhabdus dicambivorans Ndbn-20. Applied and Environmental Microbiology, 84(4). https://doi.org/10.1128/AEM.02133-17
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.