High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars

  • Fang K
  • Metzger B
76Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The merger of a neutron star (NS) binary may result in the formation of a long-lived, or indefinitely stable, millisecond magnetar remnant surrounded by a low-mass ejecta shell. A portion of the magnetar’s prodigious rotational energy is deposited behind the ejecta in a pulsar wind nebula, powering luminous optical/X-ray emission for hours to days following the merger. Ions in the pulsar wind may also be accelerated to ultra-high energies, providing a coincident source of high-energy cosmic rays and neutrinos. At early times, the cosmic rays experience strong synchrotron losses; however, after a day or so, pion production through photomeson interaction with thermal photons in the nebula comes to dominate, leading to efficient production of high-energy neutrinos. After roughly a week, the density of background photons decreases sufficiently for cosmic rays to escape the source without secondary production. These competing effects result in a neutrino light curve that peaks on a few day timescale near an energy of ∼10 18 eV. This signal may be detectable for individual mergers out to ∼10 (100) Mpc by current (next generation) neutrino telescopes, providing clear evidence for a long-lived NS remnant, the presence of which may otherwise be challenging to identify from the gravitational waves alone. Under the optimistic assumption that a sizable fraction of NS mergers produce long-lived magnetars, the cumulative cosmological neutrino background is estimated to be for an NS merger rate of , overlapping with IceCube’s current sensitivity and within the reach of next-generation neutrino telescopes.

Cite

CITATION STYLE

APA

Fang, K., & Metzger, B. D. (2017). High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars. The Astrophysical Journal, 849(2), 153. https://doi.org/10.3847/1538-4357/aa8b6a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free