Abstract
In yeast, starvation for amino acids stimulates GCN2 phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF-2). Phosphorylation of eIF-2α induces the translational expression of GCN4, a transcriptional activator of the general amino acid control pathway. It has been proposed that GCN2 sequences containing homology to histidyl-tRNA synthetases (HisRS) bind uncharged tRNA that accumulate during amino acid limitation and stimulate the activity of GCN2 kinase. In this report we address whether the HisRS-related sequences are required for GCN2 phosphorylation of eIF-2α in an in vitro assay. To measure the activity of GCN2 kinase in cellular extracts, we expressed and purified a truncated form of yeast eIF-2α. Phosphorylation of the recombinant elF-2α substrate was dependent on both GCN2 kinase activity and the eIF-2α phosphorylation site, serine 51. Mutations in the HisRS-related domain of GCN2, which have been shown to block phosphorylation of eIF-2α in vivo and the subsequent stimulation of the general control pathway, also greatly reduced eIF-2α phosphorylation in the in vitro assay. These results indicate that the HisRS-related sequences are required for activation of GCN2 kinase function.
Cite
CITATION STYLE
Zhu, S., Sobolev, A. Y., & Wek, R. C. (1996). Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. Journal of Biological Chemistry, 271(40), 24989–24994. https://doi.org/10.1074/jbc.271.40.24989
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.