The ocean environment and the physical and biological processes that govern dynamics are complex. Sampling the ocean to better understand these processes is difficult given the temporal and spatial domains and sampling tools available. Biological systems are especially difficult as organisms possess behavior, operate at horizontal scales smaller than traditional shipboard sampling allows, and are often disturbed by the sampling platforms themselves. Sensors that measure biological processes have also generally not kept pace with the development of physical counterparts as their requirements are as complex as the target organisms. Here, we attempt to address this challenge by advocating the need for sensor-platform combinations to integrate and process data in real-time and develop data products that are useful in increasing sampling efficiencies. Too often, the data of interest is only garnered after post-processing after a sampling effort and the opportunity to use that information to guide sampling is lost. Here we demonstrate a new autonomous platform, where data are collected, analyzed, and data products are output in real-time to inform autonomous decision-making. This integrated capability allows for enhanced and informed sampling towards improving our understanding of the marine environment.
CITATION STYLE
Moline, M. A., & Benoit-Bird, K. (2016). Sensor fusion and autonomy as a powerful combination for biological assessment in the marine environment. Robotics, 5(1). https://doi.org/10.3390/robotics5010004
Mendeley helps you to discover research relevant for your work.