Abstract
Many studies have been conducted on tissue stem cells in the field of regenerative medicine, and cultured dental pulp mesenchymal cells have been reported to secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured rat dental-pulp-derived cells subcutaneously into the back of nude mice. We found that when β-glycerophosphate was added to the culture medium, the mRNA of the dentin sialophosphoprotein (DSPP) gene coding dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) was expressed, and an increase in alkaline phosphatase, an early marker of odontoblast differentiation, was also demonstrated. Six weeks after implantation, subcutaneous formation of radiopaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants, and isolated odontoblast-like cells began to form dentin-like hard tissue formation. Scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured rat dental-pulp-derived cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.
Author supplied keywords
Cite
CITATION STYLE
Fujiwara, S., Kumabe, S., & Iwai, Y. (2006). Isolated rat dental pulp cell culture and transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 83(1), 15–24. https://doi.org/10.2535/ofaj.83.15
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.