Abstract
In this paper, we propose a novel blockchain-based contractual routing (BCR) protocol for a network of untrusted IoT devices. In contrast to conventional secure routing protocols in which a central authority (CA) is required to facilitate the identification and authentication of each device, the BCR protocol operates in a distributed manner with no CA. The BCR protocol utilizes smart contracts to discover a route to a destination or data gateway within heterogeneous IoT networks. Any intermediary device can guarantee a route from a source IoT device to a destination device or gateway. We compare the performance of BCR with that of the Ad-hoc On-Demand Distance Vector (AODV) routing protocol in a network of 14 devices. The results show that the routing overhead of the BCR protocol is 5 times lower compared to AODV at the cost of a slightly lower packet delivery ratio. BCR is fairly resistant to both Blackhole and Greyhole attacks. The results show that the BCR protocol enables distributed routing in heterogeneous IoT networks.
Cite
CITATION STYLE
Ramezan, G., & Leung, C. (2018). A Blockchain-Based Contractual Routing Protocol for the Internet of Things Using Smart Contracts. Wireless Communications and Mobile Computing, 2018. https://doi.org/10.1155/2018/4029591
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.