In the present work, the effects of (i) Ti replacement by Hf and (ii) the synthesis method on microstructure and crystal structure evolution in the high-entropy alloy HfxTi(1−x)NbVZr are reported. The results of scanning electron microscopy and X-ray diffraction analysis of alloys prepared by both arc-melting and induction-melting are compared with theoretical thermodynamic calculations using the CALPHAD approach. The non-equilibrium thermodynamic calculations agree well with the experimental observations for the arc-melted alloys: a mixture of body-centered cubic (BCC) and cubic C15 Laves phases occurs for low-Ti-concentration alloys and a single BCC phase is obtained for high-Ti alloys. The agreement is not as good when using the induction-melting method: equilibrium solidification calculations predict that the most stable state is a phase mixture of BCC, hexagonal close-packed, and a cubic C15 Laves phase, while experimentally only one BCC and one hexagonal C14 Laves phase were found. The estimation of the exact cooling rate and the lack of a thermodynamic database can explain the difference. In addition, for both methods, the thermodynamic calculation confirms that for a high Ti concentration, the BCC phase is stable, whereas phase separation is enhanced with a higher Hf concentration.
CITATION STYLE
Moussa, M., Gorsse, S., Huot, J., & Bobet, J. L. (2023). Effect of the Synthesis Route on the Microstructure of HfxTi(1−x)NbVZr Refractory High-Entropy Alloys. Metals, 13(2). https://doi.org/10.3390/met13020343
Mendeley helps you to discover research relevant for your work.