Structure and Biosynthesis of Myxofacyclines: Unique Myxobacterial Polyketides Featuring Varing and Rare Heterocycles[]**

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A metabolome-guided screening approach in the novel myxobacterium Corallococcus sp. MCy9072 resulted in the isolation of the unprecedented natural product myxofacycline A, which features a rare isoxazole substructure. Identification and genomic investigation of additional producers alongside targeted gene inactivation experiments and heterologous expression of the corresponding biosynthetic gene cluster in the host Myxococcus xanthus DK1622 confirmed a noncanonical megaenzyme complex as the biosynthetic origin of myxofacycline A. Induced expression of the respective genes led to significantly increased production titers enabling the identification of six further members of the myxofacycline natural product family. Whereas myxofacyclines A–D display an isoxazole substructure, intriguingly myxofacyclines E and F were found to contain 4-pyrimidinole, a heterocycle unprecedented in natural products. Lastly, myxofacycline G features another rare 1,2-dihydropyrol-3-one moiety. In addition to a full structure elucidation, we report the underlying biosynthetic machinery and present a rationale for the formation of all myxofacyclines. Unexpectedly, an extraordinary polyketide synthase-nonribosomal peptide synthetase hybrid was found to produce all three types of heterocycle in these natural products.

Cite

CITATION STYLE

APA

Popoff, A., Hug, J. J., Walesch, S., Garcia, R., Keller, L., & Müller, R. (2021). Structure and Biosynthesis of Myxofacyclines: Unique Myxobacterial Polyketides Featuring Varing and Rare Heterocycles[]**. Chemistry - A European Journal, 27(67), 16654–16661. https://doi.org/10.1002/chem.202103095

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free